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validated by previous observations on several hyperten-
sion candidate genes (eg, CYP3A and AGT),68,69 and 
rs13107325 in SLC39A8 seems to be another example to 
fit such positive selection. Therefore, the protective effects 
of T-allele in rs13107325 from hypertension and blood 
pressures might reflect one of the driving forces for this 
positive selection.

A second speculated selective pressure derives from 
its effects on obesity and energy intake. Although the 

association of  T-allele and increased risk of  obesity and 
related metabolic traits (eg, lower HDL) seems to be 
harmful for humans, however, considering that Europe 
mainland is much colder than Africa continent and when 
modern humans have migrated to this changed environ-
ment, the positive selected alleles (eg, rs13107325 T-allele) 
arose and helped humans to increase their energy intake 
and expenditure to maintain thermal homeostasis (ie, an 
optimal body temperature that is most often above their 

Fig. 6. The association results of SNPs in the genomic region of chr4:102900000–103300000 with human traits. (A) association of SBP 
in the discovery sample of Ehret et al.,42 (B) association of SBP in the discovery sample of Ehret et al.,42 (C) association of BMI in the 
discovery sample of Speliotes et al.47
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ambient temperature) and undergo the long cold tem-
perature period, while the same allele would also con-
tribute to the contemporary increase in obesity rates and 
related metabolic traits. This speculation is supported by 
the significant associations with rs13107325 T-allele with 
higher caloric intake from protein in Europeans (Meta 
P = .0027). We also cannot exclude the possibility that 
the effect of  rs13107325 on higher dietary macronutri-
ent intake reflects another selective pressure, while its 
association with obesity is likely a by-product of  higher 
energy intake. However, we are a bit cautious in the 
interpretation of  this hypothesis because it might not 
be able to fully explain why the derived T-allele is rare 
in Siberia (extreme cold), but is common in the Middle 
East area, and further studies are needed to improve this 
hypothesis.

Conclusions and Implications

Our data provide evidence of  positive selection on a 
schizophrenia risk SNP rs13107325 in the SLC39A8 
gene, and we propose a hypothesis about the relation-
ship among positive selection of  host alleles, schizo-
phrenia, hypertension, energy intake, and the unique 
history of  Europeans (figure 7). The positive selected 
risk T-allele might be beneficial for humans to bet-
ter adapt to the Europe environment, however, as a 
by-product of  pleiotropic effect, ie, increased suscep-
tibility to schizophrenia among populations carrying 
the same allele, which further support the hypothesis 
that schizophrenia is likely the by-product of  human 
evolution. To beyond, we believe that the evolution-
ary advantages of  schizophrenia risk alleles caused 

by positive selection would not be restricted within 
single population, and there may also be additional 
selective pressures to drive the expansion of  the risk 
alleles.

It is noteworthy to observe that the schizophrenia 
risk T-allele at rs13107325 could reduce risk of  sev-
eral metabolic syndromes (eg, hypertension and blood 
pressure), because metabolic syndromes are highly 
prevalent in individuals with schizophrenia.70 This 
pleiotropic effects implied that SLC39A8 (T-allele) 
might be a good drug target for metabolic syndromes, 
especially in schizophrenia patients. On the other hand, 
side effects related to metabolic syndromes should also 
be considered when developing antipsychotics drugs 
and therapies targeting SLC39A8 in schizophrenia 
patients.

In summary, our evolutionary and genetic analy-
ses may offer a unique and powerful opportunity to 
bring proximate and ultimate approaches together to 
discover how and why human diseases (eg, schizophre-
nia) risks have evolved.19 It is likely that schizophrenia 
risk variants acted as a double-edged sword in the evo-
lutionary history of  humans, ie, genetic variants that 
contribute to schizophrenia risk may also bring com-
pensatory advantages to humans. The primary goals 
of  medicine are the prevention, alleviation, or repair 
of  the phenotypes or diseases that humans consider 
maladaptive, via well-substantiated therapies. As such, 
the uncertainties of  the most purported evolutionary 
insights into human health concerns usually preclude 
consideration serious enough to warrant clinical evalu-
ation, and provide guidance for future researches and 
therapies.

Fig. 7. Hypothesis about positive selection and schizophrenia in European populations.
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